Difference between revisions of "Smart Yo-yo"

From GICL Wiki
Jump to: navigation, search
Line 20: Line 20:
 
For the durability the stresses resulting from the loading of the lever were analyzed using ANSYS.  The stresses cause bending and axial tension. While these stresses do not even begin to approach the limits of the ABS used in the arm under the cyclic loading expected fatigue failure becomes a concern.
 
For the durability the stresses resulting from the loading of the lever were analyzed using ANSYS.  The stresses cause bending and axial tension. While these stresses do not even begin to approach the limits of the ABS used in the arm under the cyclic loading expected fatigue failure becomes a concern.
  
In addition an Adams model of the yo-yo was created to simulate the motion of the leaver and the breaking condition. This model generated the views and the animation found below.
+
In addition an Adams model of the yo-yo was created to simulate the motion of the leaver and the breaking condition. To simplify the calculations and the processing time the geometry in the model was simplified. This geometry allows for the same motion and essentially the same characteristics. This model generated the views and the animation found below.
  
  
Line 72: Line 72:
 
[[Image:front.JPG]]
 
[[Image:front.JPG]]
  
This view of the yo-yo best displys the fuctional componants of the breaking mechanism and the simplified gemotery used in the analsis.
+
This view of the yo-yo best displays the functional components of the breaking mechanism and the simplified geometry used in the analysis.
  
 
[[Image:iso.JPG]]
 
[[Image:iso.JPG]]
 +
 +
This view gives the best overall impression of the way the yo-yo comes together.
  
 
[[Image:side.JPG]]
 
[[Image:side.JPG]]
 +
 +
This image affords a better view of the bearing and planes the components of the yo-yo fall in.
  
  

Revision as of 21:48, 25 March 2007

Figure 1: Smart Yo-yo

Contents

Description

The smart yo-yo is a yo-yo that makes it very easy to return compared to traditional yo-yos.

How It Works

The concept behind the smart yo-yo is a brake that is disengaged as long as the yo-yo is spinning fast enough. A lever is attached to the hub of the yo-yo and is allowed to pivot from one end. A small metal weight is attached to the other end. In the middle of the lever is a spring which pushes the lever into contact with the bearing. This bearing rides on the center axle and is the mounting point for the string.

At low speeds the spring force is stronger than the centripetal force acting on the weight, and the brake is engaged. This stops the rotation of the bearing with respect to the outer shell causing the yo-yo to wind up. Once the yo-yo is spinning fast enough the centripetal force of the weight overcomes the spring force and the lever moves away from the bearing, allowing the hub to spin freely so the yo-yo "sleeps." Additionally the mechanical break creates an automatic return condition where very little force is required to return the yo-yo.

In traditional yo-yos, the whole body of the yo-yo is one part and has a string wrapped around the middle. It "sleeps" by spinning on the string. Since this depends on many varying characteristics of the string, including how much friction is involved or how tight the string is tied, it is very unpredictable. However with the bearing this model allows for longer and more reliable spin and sleep times.

Computer models were created of each of the following parts. Using the current model as a guide and accepted values for the material properties. The system was analyzed using the Adams and Ansys software packages and dynamics (hand calculations). In addition to these values the spring constant was found by measuring the deflection after the application of a force in compression on the spring.

Two Engineering specifications were analyzed: conditions for sleep and durability of the leaver arm.

The ability of the yo-yo to sleep is primarily dependant on the centripetal force felt by the weight at the end of the leaver. This is in turn dependent upon the angular velocity of the yo-yo. This angular velocity was determined using a force analysis of the weight and leaver arm for the point at which the brake will disengage.

For the durability the stresses resulting from the loading of the lever were analyzed using ANSYS. The stresses cause bending and axial tension. While these stresses do not even begin to approach the limits of the ABS used in the arm under the cyclic loading expected fatigue failure becomes a concern.

In addition an Adams model of the yo-yo was created to simulate the motion of the leaver and the breaking condition. To simplify the calculations and the processing time the geometry in the model was simplified. This geometry allows for the same motion and essentially the same characteristics. This model generated the views and the animation found below.


Parts

The table belows lists the Bill of Materials for the Smart Yo-yo:

Table 3.1: Smart Yo-yo Bill of Materials
Part # Part Name Category # Function Material Picture
1 Hub Support element Houses internal components Acrylic (Polymer)
Hub.JPG
2 Lever Transmission Applies friction to main bearing ABS (Polymer)
Leaver.JPG
3 Main Bearing Support Element Allows hub and axle to rotate, attaches hub to string ABS (Polymer)
Main bearing.JPG
4 Axle Support Element Connects the two halves of the hub and rotates in the main bearing Steel
Axle.JPG
5 Spring Input Keeps brake engaged Steel
Spring.JPG


Yo-Yo Views from Adams

Front.JPG

This view of the yo-yo best displays the functional components of the breaking mechanism and the simplified geometry used in the analysis.

Iso.JPG

This view gives the best overall impression of the way the yo-yo comes together.

Side.JPG

This image affords a better view of the bearing and planes the components of the yo-yo fall in.


View Yo-Yo in Motion

Media:yoyo.avi


Graphical Representation of the Stress

Ansys leaver.JPG