AOI

From GICL Wiki
Revision as of 17:13, 12 May 2009 by PatrickSmith (Talk | contribs)

Jump to: navigation, search

Title(s): Art of Illusion

Version ID: 2.7.2

Date released: 2009-04-19 (Version 0.1)

Date: 1999-10-29

Creator(s): Peter Eastman

Contributor(s): Peter Eastman

Relationships: N/A

  • Previous Version(s): N/A
  • Contains: N/A
  • Syntax Format(s): N/A
  • Family Format(s): N/A

Description: Art of Illusion (AoI) is an open-source software package that can be used for 3D modeling and rendering written entirely in Java. The program combines a simple user interface with powerful features usually found in high-end graphics software.

The program includes a long list of features:

  • Modeling - AoI contains several modeling primitives including: cube, sphere, cone, tube, curve, triangle mesh, and spline mesh. The program allows the user to: use Boolean modeling operations; lathe, sweep, extrude along a curve; and use a complete mesh editor.
  • Animation - AoI lets the user create animations through poses and gestures, skeletal animation, distortion tracks for bending/twisting effects, linear and discontinuous tracks, and scripted objects.
  • Textures - Uniform or image-mapped texture editors allow for quick texture creation. 2D and 3D procedural textures can be based on many parameters, can be animated, can be mapped to objects in several ways (projection, spherical, etc.), and can be layered.
  • Materials - Procedural and uniform materials can be created with an adjustable index of refraction, scattering, eccentricity, along with other material traits. The materials also allow for single scattering and photon scattering during rendering.
  • Rendering - AoI include full global illumination, including caustics, for rendering. Various methods can be used, such as Monte Carlo and Photon Mapping. Features such as point lights, spotlights, directional lights, soft shadows, depth of field, and motion blur add to the realism of the rendering.
  • Post-processing - AoI allows the post processing of images to add a camera filter or for noise reduction for global illumination.
  • Scripting - AoI has a flexible scripting language built-in, allowing for user defined scripts and plug-ins

For a more complete list of AoI's features, see the complete list of features.

History: - Art of Illusion has been maintained by Peter Eastman since 1999 with contributions from users of Art of Illusion.

Example(s): Example Template - Information and example models of the engineering format.

Identifier: - A URL or other identifier that refers to the engineering format.

Documentation: Documentation Template - Information in general about the engineering format.

File Extensions: - Extensions of the engineering format, excluding the dot.

Applications: - Applications that the engineering format uses.

Magic numbers: - Unique identifying characters at the beginning of files for this engineering format.

Format(s): - The MIME file types.

Rights: - The name or type of the license for the engineering format. Examples: BSD-style license, Apache License, Proprietary license

Sustainability Factors: - Facts about the sustainability of this particular engineering format.

  • Standardization: - Information regarding standardization attempts with this format.
  • Adoption: - Information about how this format has been adopted by other organizations.
    • Licensing and patent claims: - Any licenses or patent claims that the engineering format makes.
  • Self-documentation: - Any self-documentation capabilities of the format.
  • External dependencies: - Anything that the format depends on outside of its control to function.
  • Technical protection considerations: - Any considerations that are necessary when it comes to technical protection.

Typical use: - Keywords that describe the format's typical use. Examples: CAD and CAM

File classification: - Specific properties that pertain to this engineering format.

  • Type {Binary, Text}: - The type of file, choices are binary and text.
  • Raster data: - Section describes whether or not the engineering format supports raster data.
    • Raster data 2D: - Can the format support 2D raster data? Example: A format that can contain 2D pixelated data supports 2D raster data.
      • Is Supported: - Is the feature supported in the engineering format?
      • Description: - This field is used to describe the support or lack of support of the feature.
    • Raster data 3D: - Can the format support 3D raster data? Example: A format that can contain 2D pixelated data of a 3D model supports 3D raster data.
      • Is Supported: - Is the feature supported in the engineering format?
      • Description: - This field is used to describe the support or lack of support of the feature.
  • Geometric representation: - Section describes whether or not the engineering format supports geometric representations.
    • Implicit representation: - Section describes whether or not the engineering format supports implicit representations.
      • Implicit surfaces: - Can the format support implicit surfaces? Example: A format that can contain surfaces that are generated with mathematical equations that contain the independent variables x, y, and z, like x^2 + y^2 + z^2 * R^2 = 0, supports implicit surfaces.
        • Is Supported: - Is the feature supported in the engineering format?
        • Description: - This field is used to describe the support or lack of support of the feature.
      • Implicit curves: - Can the format support implicit curves? Example: A format that can contain curves that are generated with mathematical equations that contain the independent variables x, y, and z, supports implicit curves.
        • Is Supported: - Is the feature supported in the engineering format?
        • Description: - This field is used to describe the support or lack of support of the feature.
      • Point set: - Can the format support point sets? Example: A format that supports surfaces and lines that are generated by points that form triangles supports point sets.
        • Is Supported: - Is the feature supported in the engineering format?
        • Description: - This field is used to describe the support or lack of support of the feature.
    • Mesh: - Section describes whether or not the engineering format supports mesh.
      • Manifold surface meshes: - Can the format support manifold surface meshes? Example: A format that supports surfaces that are mathematical spaces in which every point has a neighborhood which resembles Euclidean space
        • Is Supported: - Is the feature supported in the engineering format?
        • Description: - This field is used to describe the support or lack of support of the feature.
      • Manifold volume meshes: - Can the format support manifold volume meshes? Example: A format that supports volumes that are mathematical spaces in which every point has a neighborhood which resembles Euclidean space
        • Is Supported: - Is the feature supported in the engineering format?
        • Description: - This field is used to describe the support or lack of support of the feature.
      • Non-manifold meshes: - Can the format support non-manifold meshes? Example: A format that supports meshes that are not manifolds
        • Is Supported: - Is the feature supported in the engineering format?
        • Description: - This field is used to describe the support or lack of support of the feature.
    • Parametric representation: - Section describes whether or not the engineering format supports parametric representations.
      • Parametric surfaces: - Can the format support parametric surfaces? Example: A format that can contain surfaces that are generated with parametric equations supports parametric surfaces.
        • Is Supported: - Is the feature supported in the engineering format?
        • Description: - This field is used to describe the support or lack of support of the feature.
      • Parametric curves: - Can the format support parametric curves? Example: A format that can contain curves that are generated with parametric equations supports parametric curves.
        • Is Supported: - Is the feature supported in the engineering format?
        • Description: - This field is used to describe the support or lack of support of the feature.
    • Contour sets: - Can the format support contour sets?
      • Is Supported: - Is the feature supported in the engineering format?
      • Description: - This field is used to describe the support or lack of support of the feature.
    • NURBS: - Can the format support Non Uniform Rational Basis Splines? Examples: The engineering formats IGES, STEP, ACIS, and PHIGS
      • Is Supported: - Is the feature supported in the engineering format?
      • Description: - This field is used to describe the support or lack of support of the feature.
  • Multi-resolution models: - Can the format support models with multiple resolutions? Examples: A format that supports a highly detailed and lowly detailed model simultaneously supports multi-resolution models.
    • Is Supported: - Is the feature supported in the engineering format?
    • Description: - This field is used to describe the support or lack of support of the feature.
  • Dynamics: - Section describes whether or not the engineering format supports dynamics.
    • Kinematics: - Can the format support kinematics? Example: Does the format allow model parts to rotate?
      • Is Supported: - Is the feature supported in the engineering format?
      • Description: - This field is used to describe the support or lack of support of the feature.
    • Assembly: - Can the format support assembly? Example: Does the format allow the assembly instructions to be explicitly specified with a model?
      • Is Supported: - Is the feature supported in the engineering format?
      • Description: - This field is used to describe the support or lack of support of the feature.
    • Force(s): - Can the format support forces? Example: Does the format support acceleration forces?
      • Is Supported: - Is the feature supported in the engineering format?
      • Description: - This field is used to describe the support or lack of support of the feature.
  • Boundary representation - Can the format support models with boundary representations?
    • Manifold surface boundary representations: - Can the format support manifold surface boundary representations? Example: The engineering format STEP
      • Is Supported: - Is the feature supported in the engineering format?
      • Description: - This field is used to describe the support or lack of support of the feature.
    • Manifold volume boundary representations: - Can the format support manifold volume boundary representations? Example: The engineering format STEP
      • Is Supported: - Is the feature supported in the engineering format?
      • Description: - This field is used to describe the support or lack of support of the feature.
    • Non-manifold boundary representations: - Can the format support non-manifold boundary representations? Example: The engineering format STEP
      • Is Supported: - Is the feature supported in the engineering format?
      • Description: - This field is used to describe the support or lack of support of the feature.
  • Material transparency: - Can the format support transparency? Example: Does the format allow models to have a clear window in a car?
    • Is Supported: - Is the feature supported in the engineering format?
    • Description: - This field is used to describe the support or lack of support of the feature.

References: - A list of references regarding any aspects of this engineering format; any reading material supplemental to this page.