On Modeling Multi-Agent Task Scheduling as a Distributed Constraint Optimization Problem

Evan A. Sultanik Pragnesh Jay Modi William C. Regli

Drexel University
Department of Computer Science
Philadelphia, PA
United States
http://www.cs.drexel.edu/

IJCAI 2007-01-10
Scenario: Hostage Rescue

Goal: Create a Schedule
- Mitigate Crisis
- Capture Terrorists
- Save Hostages

Coast Guard
Philadelphia Police
Surveil
Arrest
Camden Police
Extract
Camden EMT
Treat

Synchronization Point
Hostages Killed

On Modeling Multi-Agent Task Scheduling
Scenario: Hostage Rescue

- Goal: Create a Schedule, Mitigate Crisis, Capture Terrorists, Save Hostages
- Participants: Coast Guard, Philadelphia Police, Camden Police, Camden EMT

Sultanik, Modi, and Regli
On Modeling Multi-Agent Task Scheduling
Scenario: Hostage Rescue

The Problem of Coordination

- Goal: Create a Schedule
- Mitigate Crisis
- Capture Terrorists
- Save Hostages

Involving:
- Coast Guard
- Philadelphia Police
- Surveil
- Arrest
- Camden Police
- Extract
- Camden EMT
- Treat

Synchronization Point:
- Hostages
- Killed

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Scenario: Hostage Rescue

- Goal: Create a Schedule
- Mitigate Crisis
- Capture Terrorists
- Save Hostages

- Coast Guard
- Philadelphia Police
- Surveil
- Arrest
- Camden Police
- Extract
- Camden EMT
- Treat

Synchronization Point

Hostages
Killed

On Modeling Multi-Agent Task Scheduling
Scenario: Hostage Rescue

Goal: Create a Schedule, Mitigate Crisis, Capture Terrorists, Save Hostages

Coast Guard, Philadelphia Police, Surveil, Arrest
Camden Police, Extract
Camden EMT, Treat

Synchronization Point
Hostages, Killed

On Modeling Multi-Agent Task Scheduling
Scenario: Hostage Rescue

Goal: Create a Schedule
Mitigate Crisis
Capture Terrorists
Save Hostages

Coast Guard
Philadelphia Police
Surveil
Arrest
Camden Police
Extract
Camden EMT
Treat

Synchronization
Point
Hostages
Killed

Sultanik, Modi, and Regli
On Modeling Multi-Agent Task Scheduling
Motivation
Approach
Summary of Contributions
Scenario
The Problem of Coordination

Scenario: Hostage Rescue

Goal: Create a Schedule
Mitigate Crisis
Capture Terrorists
Save Hostages

Coast Guard
Philadelphia Police
Surveil
Arrest
Camden Police
Extract
Camden EMT
Treat

Synchronization Point
Hostages
Killed

On Modeling Multi-Agent Task Scheduling
Scenario: Hostage Rescue

Goal: Create a Schedule

Mitigate Crisis
Capture Terrorists
- Coast Guard: Surveil
- Philadelphia Police: Arrest

Save Hostages
- Camden Police
- Camden EMT: Extract, Treat

Synchronization Point
Hostages Killed

Sultanik, Modi, and Regli
On Modeling Multi-Agent Task Scheduling
Scenario: Hostage Rescue

Motivation

Approach

Summary of Contributions

The Problem of Coordination

Scenario

Goal: Create a Schedule

Mitigate Crisis

Capture Terrorists

Save Hostages

Coast Guard

Philadelphia Police

Surveil

Arrest

Camden Police

Extract

Camden EMT

Treat

Synchronization

Point

Hostages

Killed

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Scenario: Hostage Rescue

Domain Challenges:
- Distribution
- Interaction between different organizations & jurisdictions.
- Heterogeneous communication systems.
- Temporal dependencies; actions of one agent can enable/disable facilitate/hinder actions of another.

Technical Challenges:
- Representation
- Algorithms
- Optimizations (i.e., making the algorithms feasible)
- Measurement
Domain Challenges

- **Distribution**
 - Interaction between different organizations & jurisdictions.
 - Heterogeneous communication systems.

- **Temporal dependencies**; actions of one agent can...
 - enable/disable
 - facilitate/hinder

...actions of another
Domain Challenges

- Distribution
 - Interaction between different organizations & jurisdictions.
 - Heterogeneous communication systems.
- Temporal dependencies; actions of one agent can...
 - enable/disable
 - facilitate/hinder
- ...actions of another

Technical Challenges

- Representation
- Algorithms
- Optimizations (i.e., making the algorithms feasible)
- Measurement

Scenario: Hostage Rescue

Domain Challenges

Scenario

The Problem of Coordination

On Modeling Multi-Agent Task Scheduling
Approach

Task Scheduling Problem

Representation

\[C_{TÆMS} \]

Algorithms

DCOP

SCHEDULE

Optimizations

Measurement

Macro Agent Transport Event-Based Simulator (MATES)

Department of Computer Science

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Approach

Task Scheduling Problem

Representation

$\text{C}_\text{TÆMS}$

Algorithms

DCOP

Schedule

Optimizations

Measurement

Macro Agent Transport Event-Based Simulator (MATES)
Motivation
Approach
Summary of Contributions

Representation
Algorithms
Optimizations

Approach

Task Scheduling Problem

Representation

\[\mathcal{C}_{\text{TÆMS}} \]

Algorithms

\[\text{DCOP} \]

Optimizations

Measurement

Macro Agent Transport Event-Based Simulator (MATES)
Approach

Task Scheduling Problem

Representation

C_TÆMS

Algorithms

DCOP

Schedule

Optimizations Measurement

Macro Agent Transport Event-Based Simulator (MATES)
Approach

Task Scheduling Problem

Representation

C_TAES

Algorithms

DCOP

Schedule

Optimizations Measurement

Macro Agent Transport Event-Based Simulator (MATES)
Motivation

Approach

Summary of Contributions

Representation

Algorithms

Optimizations

Task Scheduling Problem

Representation

Algorithms

Schedule

Optimizations

Measurement

Macro Agent Transport Event-Based Simulator (MATES)

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Discrete, stochastic modeling language (formal grammar)\(^1\).

Derivative of the TÆMS modeling language\(^2\).

- Defined in the context of the COORDINATORS Project.

Hierarchical Task Network\(^3\).

Widely used in the multi-agent systems community\(^4\)\(^5\)\(^6\)\(^7\).

\(^1\) Boddy, et al., 2006
\(^2\) K. Decker, 1996
\(^3\) K. Erol, J. Hendler, and D. Nau, 1994
\(^4\) Musliner, Durfee, Wu, Dolgov, Goldman, and Boddy, 2006
\(^5\) Smith, Gallagher, Zimmerman, Barbulescu, and Rubinstein, 2006
\(^6\) Phelps and Rye, 2006
\(^7\) Cornell C_TÆMS Scheduler
Methods/Tasks: like actions
Non-Local Effects (NLEs): temporal constraints
NLE Chains
⟨Earliest Start Time, Latest Start Time, Expected Duration⟩
Quality Accumulation Functions (QAFs)
Goal: create a schedule that maximizes quality at the root.
Approach

Task Scheduling Problem

Representation

- $C_{TÆMS}$

Algorithms

- DCOP

Schedule

Optimizations

Measurement

Macro Agent Transport Event-Based Simulator (MATES)
Approach

TASK SCHEDULING PROBLEM

Representation

C_TAES

Algorithms

DCOP

Schedule

Optimizations

Measurement

Macro Agent Transport Event-Based Simulator (MATES)

Motivation

Approach

Summary of Contributions

Representation

Algorithms

Optimizations
Definition

* Distributed Constraint Optimization Problem *

- Each agent has a set of variables that need assignment;
- Each variable has a finite *domain* containing possible values;
- Set of constraints between agents’ variables’.

- Constraints are a natural way to represent dependencies between agent actions.
- There exist guaranteed-optimal *distributed* algorithms for DCOP:
 - DPOP (Petcu and Faltings, 2005);
 - OptAPO (Mailler and Lesser, 2004); and
DCOP

Definition

Distribution Optimization Problem:
- Each agent has a set of variables that need assignment;
- Each variable has a finite domain containing possible values;
- Set of constraints between agents' variables.

Constraints are a natural way to represent dependencies between agent actions.

There exist guaranteed-optimal distributed algorithms for DCOP:
- DPOP (Petcu and Faltings, 2005);
- OptAPO (Mailler and Lesser, 2004); and
DCOP

Definition
- Distributed Constraint Optimization Problem (DCOP)
- Each agent has a set of variables that need assignment;
- Each variable has a finite domain containing possible values;
- Set of constraints between agents' variables.
- Constraints are a natural way to represent dependencies between agent actions.
- There exist guaranteed-optimal distributed algorithms for DCOP:
 - DPOP (Petcu and Faltings, 2005);
 - OptAPO (Mailler and Lesser, 2004); and
 - ADOPT (Modi, et al., 2005).
Definition

Distribution Constraint Optimization Problem (DCOP)

- Each agent has a set of variables that need assignment.
- Each variable has a finite domain containing possible values.
- Set of constraints between agents' variables.
- Constraints are a natural way to represent dependencies between agent actions.
- There exist guaranteed-optimal distributed algorithms for DCOP:
 - DPOP (Petcu and Faltings, 2005);
 - OptAPO (Mailler and Lesser, 2004); and
 - ADOPT (Modi, et al., 2005).

Example

```
A {R,G,B}  ≠ ≠ ≥ ≤
C {R,G,B}  ≠ ≠ ≥ ≤
B {R,G,B}  ≠ ≠ ≥ ≤
D {R,G,B}  ≠ ≠ ≥ ≤
```
DCOP

Definition

Distributed Constraint Optimization Problem (DCOP)

Example

Agent 1
Agent 2
Agent 3

Constraints between agents' variables:
Set of constraints in the problem

Representation

Algorithms

Optimization

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Motivation
Approach
Summary of Contributions

Representation
Algorithms
Optimizations

Approach

Task Scheduling Problem

Representation

C_TAEMS

Algorithms

DCOP

Schedule

Optimizations

Measurement

Macro Agent Transport Event-Based Simulator (MATES)
Motivation

Approach

Summary of Contributions

Representation

Algorithms

Optimizations

Approach

Task Scheduling Problem

Representation

\(C_{\text{TÆMS}} \)

Algorithms

DCOP

Schedule

Optimizations

Measurement

Macro Agent Transport Event-Based Simulator (MATES)
Mapping \(\text{DSC_TÀEMS} \rightarrow \text{DCOP} \)

DCOP-Solvable C_TÀEMS: \(\text{DSC_TÀEMS} \)

Subset of \(\text{C_TÀEMS} \) that is solvable using existing DCOP algorithms.

- Expected value instead of prob. distributions;
- Only \(\sum \) QAFs;
- Only Enables/Disables NLEs; and
- Discretize time.
Mapping DSC_\text{TAEMS} \rightarrow DCOP

Motivation

Approach

Summary of Contributions

Representation

Algorithms

Optimizations

Mapping DSC_\text{TAEMS} \rightarrow DCOP

- Mitigate Crisis
- Save Hostages
- Capture Terrorists
- Extract Hostages
- Medical Attention
- Arrest
- Surveil

Quality: 100

Quality: 100

Quality: 50

Quality: 10

<15, \text{\textlangle}15,60,30\rangle>

<25, \text{\textlangle}10,60,60\rangle>

<0,60,?>

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Motivation

Approach

Summary of Contributions

Representation

Algorithms

Optimizations

Mapping DSC_TÆMS → DCOP

Methods ↔ Variables

Quality: 100 Quality: 100 Quality: 50 Quality: 10

Mitigate Crisis

Save Hostages

Capture Terrorists

<15,60,30>

<0,60,?>

<10,60,60>

<25,10>

<15,15>

Mitigate Crisis

Save Hostages

Capture Terrorists

Extract Hostages

Medical Attention

Arrest

Surveil

<15,15>

<25,10>

<15,60,30>

<10,60,60>

Quality: 100 Quality: 50 Quality: 10

Mitigate Crisis

Save Hostages

Capture Terrorists

Extract Hostages

Medical Attention

Arrest

Surveil

<15,15>

<25,10>

<15,60,30>

<10,60,60>

Quality: 100 Quality: 50 Quality: 10

Mitigate Crisis

Save Hostages

Capture Terrorists

Extract Hostages

Medical Attention

Arrest

Surveil

<15,15>

<25,10>

<15,60,30>

<10,60,60>

Quality: 100 Quality: 50 Quality: 10

Mitigate Crisis

Save Hostages

Capture Terrorists

Extract Hostages

Medical Attention

Arrest

Surveil

<15,15>

<25,10>

<15,60,30>

<10,60,60>
Mapping DSC_{TÆMS} → DCOP

Earliest/Latest Start Times ↦ Domains

Mitigate Crisis

Save Hostages

Capture Terrorists

Extract Hostages
Quality: 100

Medical Attention
Quality: 100

Arrest
Quality: 50

Surveil
Quality: 10

Extract Hostages
(Ø,15,16,...,∞)

Arrest
(Ø,15,16,...,60)

Medical Attention
(Ø,25,26,...,∞)

Surveil
(Ø,10,11,...,60)

Mitigate

Save

Capture

Hostages

Terrorists

<0,60,7>

<15,6,15>

<15,60,30>

<10,60,60>

<25,6,10>

<15,16,...,60>

(Ø,15,16,...,∞)

Discretize time.

Expected value instead of prob. distributions;

Only ∑QAFs;

Only Enables/Disables NLEs; and

DCOP-Solvable C_{TÆMS}: DSC_{TÆMS} Subset of C_{TÆMS} that is solvable using existing DCOP algorithms.
Mapping \(\text{DSC}_\text{TÆMS} \rightarrow \text{DCOP} \)

Qualities and QAFs \(\mapsto\) Soft Unary Constraints

- Mitigate Crisis
- Save Hostages
- Capture Terrorists
- Extract Hostages
- Medical Attention
- Arrest
- Surveil

Quality: 100
Quality: 100
Quality: 50
Quality: 10

- Philadelphia
- Camden
- Coast Guard

Sultanik, Modi, and Regli
On Modeling Multi-Agent Task Scheduling
Motivation

Approach

Summary of Contributions

Representation
Algorithms
Optimizations

Mapping DSC_TÆMS \rightarrow DCOP

Max Requires n-Ary Constraints

- **Mitigate Crisis**
 - Save Hostages
 - Capture Terrorists

- **Save Hostages**
 - Extract Hostages
 - Medical Attention
 - Arrest
 - Surveil

- **Capture Terrorists**
 - Medical Attention
 - Surveil

- **Extract Hostages**
 - Quality: 100

- **Medical Attention**
 - Quality: 100

- **Arrest**
 - Quality: 50

- **Surveil**
 - Quality: 10

- **Philadelphia**
 - Camden
 - Coast Guard

- **Extract Hostages**
 - \(<15,15>\)

- **Medical Attention**
 - \(<25,10>\)

- **Arrest**
 - \(<15,60,30>\)

- **Surveil**
 - \(<10,60,60>\)

- **Extract Hostages**
 - \(<0,60,?>\)

- **Arrest**
 - \(<0,60,?>\)

- **Medical Attention**
 - \(<0,60,?>\)

- **Surveil**
 - \(<0,60,?>\)

- **DCOP-Solvable C_TÆMS**: DSC_TÆMS Subset of C_TÆMS that is solvable using existing DCOP algorithms.

- **Expected value instead of prob. distributions**
- **Only \(\sum\)** QAFs
- **Only Enables/Disables NLEs**
- **Discretize time**

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Mapping DSC_TÆMS → DCOP

Enables/Disables NLEs ↔ Hard Binary Constraints
Motivation
Approach
Summary of Contributions
Representation
Algorithms
Optimizations

Mapping $\text{DSC}_\text{TÆMS} \rightarrow \text{DCOP}$

Facilitates/Hinders Require n-Ary Constraints

- Mitigate Crisis
- Save Hostages
- Capture Terrorists
- Extract Hostages
- Medical Attention
- Arrest
- Surveil

Σ

Extract Hostages
Medical Attention
Arrest
Surveil

Mitigate Crisis

Save Hostages

$\text{Capture Terrorists}$

Sultanik, Modi, and Regli
On Modeling Multi-Agent Task Scheduling
Mapping $\text{DSC}_{\text{TÆMS}} \rightarrow \text{DCOP}$

Agents \rightarrow Agents
Mapping DSC _TAEMS \rightarrow DCOP

Mutex Constraints

Motivation

Approach

Summary of Contributions

Representation

Algorithms

Optimizations

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Theorem

The problem of finding an optimal schedule for a DSC_TÆMS instance is \mathcal{NP}-HARD.

Corollary

Even if all of the variables’ domains are of cardinality two, the problem is still \mathcal{NP}-HARD!
The problem of finding an optimal schedule for a DSC\textsubscript{TaEMS} instance is \(\mathcal{NP}\)\text{-HARD}.

Even if all of the variables’ domains are of cardinality two, the problem is still \(\mathcal{NP}\)\text{-HARD}!
Approach

Task Scheduling Problem

Representation

C_T_AES

Algorithms

DCOP

Schedule

Optimizations

Measurement

Macro Agent Transport Event-Based Simulator (MATES)
Approach

Task Scheduling Problem

- **Representation**
 - C_TÆMS

- **Algorithms**
 - DCOP

- **Schedule**

Optimizations

- Measurement
 - Macro Agent Transport Event-Based Simulator (MATES)

Motivation

Approach

Summary of Contributions

Algorithms

Optimizations
Domain Size Reduction

- Finding optimal DCOP solutions has computational complexity exponential in the average domain size.
- Ideally, we want to minimize domain sizes, (or at least make them finite).
Finding optimal DCOP solutions has computational complexity exponential in the average domain size.

Ideally, we want to minimize domain sizes, (or at least make them finite).

Problem: Need ways to reduce domain size!
Naïve Domain Bounding

We can define an upper bound on the start time of a method as the maximum finite earliest start time among all methods plus the duration of all other methods.

Intuition

In the extreme, the method with maximum finite earliest start time will be executed *first*, with all other methods proceeding in succession.

Theorem

This method of naïve domain bounding will not result in suboptimal solutions.
Naïve Domain Bounding

We can define an upper bound on the start time of a method as the maximum finite earliest start time among all methods plus the duration of all other methods.

Intuition

In the extreme, the method with maximum finite earliest start time will be executed first, with all other methods proceeding in succession.

Theorem

This method of naïve domain bounding will not result in suboptimal solutions.
Example

\[M = \{ M_1 = \text{Extract} = \langle 15, \infty, 15 \rangle, \]
\[M_2 = \text{Medical} = \langle 25, \infty, 10 \rangle, \]
\[M_3 = \text{Arrest} = \langle 15, 60, 30 \rangle, \]
\[M_4 = \text{Surveil} = \langle 10, 60, 60 \rangle \} \]

\[u'_{M_1} = \max \{ u_{M_3} = 60, u_{M_4} = 60 \} \]
\[+ \sum \{ d_{M_1} = 15, d_{M_2} = 10, d_{M_3} = 30, d_{M_4} = 60 \} \]
\[= 175. \]
Example

\[\mathcal{M} = \{ M_1 = \text{Extract} = \langle 15, \infty, 15 \rangle, \]
\[M_2 = \text{Medical} = \langle 25, \infty, 10 \rangle, \]
\[M_3 = \text{Arrest} = \langle 15, 60, 30 \rangle, \]
\[M_4 = \text{Surveil} = \langle 10, 60, 60 \rangle \} \]

\[\Downarrow \]

\[u'_{M_1} = \max \{ u_{M_3} = 60, u_{M_4} = 60 \} \]
\[+ \sum \{ d_{M_1} = 15, d_{M_2} = 10, d_{M_3} = 30, d_{M_4} = 60 \} \]
\[= 175. \]
Example

\[M = \{ M_1 = \text{Extract} = \langle 15, 175, 15 \rangle, \]
\[M_2 = \text{Medical} = \langle 25, \infty, 10 \rangle, \]
\[M_3 = \text{Arrest} = \langle 15, 60, 30 \rangle, \]
\[M_4 = \text{Surveil} = \langle 10, 60, 60 \rangle \} \]

\[u'_{M_1} = \max \{ u_{M_3} = 60, u_{M_4} = 60 \} \]
\[+ \sum \{ d_{M_1} = 15, d_{M_2} = 10, d_{M_3} = 30, d_{M_4} = 60 \} \]
\[= 175. \]
It is possible to improve upon the naïve mapping by exploiting the hierarchy of DSC\textsubscript{TÆMS}' structure.

Intuition

Children’s bounds must be at least as restrictive as their parents’.
Syntax: 〈Earliest Start Time, Latest Start Time〉

Example

Mitigate Crisis 〈0, 75〉

Save Hostages 〈10, 30〉

Capture Terrorists 〈20, 100〉

Extract Hostages 〈0, ∞〉

Medical Attention 〈0, ∞〉

Arrest 〈0, 50〉

Surveil 〈0, 45〉

Average Domain Size in DCOP: ∞
Syntax: \langleEarliest Start Time, Latest Start Time\rangle

Example

Mitigate Crisis
$\langle 0, 75 \rangle$

Save Hostages
$\langle 10, 30 \rangle$

Capture Terrorists
$\langle 20, 100 \rangle$

Extract Hostages
$\langle 0, \infty \rangle$

Medical Attention
$\langle 0, \infty \rangle$

Arrest
$\langle 0, 50 \rangle$

Surveil
$\langle 0, 45 \rangle$

Average Domain Size in DCOP: ∞
Syntax: \(\langle \text{Earliest Start Time, Latest Start Time} \rangle \)

Example

- **Mitigate Crisis** \(\langle 0, 75 \rangle \)
 - **Save Hostages** \(\langle 10, 30 \rangle \)
 - **Capture Terrorists** \(\langle 20, 100 \rangle \)
 - **Extract Hostages** \(\langle 10, \infty \rangle \)
 - **Medical Attention** \(\langle 0, \infty \rangle \)
 - **Arrest** \(\langle 0, 50 \rangle \)
 - **Surveil** \(\langle 0, 45 \rangle \)

Average Domain Size in DCOP: \(\infty \)
Syntax: \(\langle \text{Earliest Start Time, Latest Start Time} \rangle\)

Example

```
Mitigate Crisis
\(\langle 0, 75 \rangle\)
```

```
Save Hostages
\(\langle 10, 30 \rangle\)
```

```
Capture Terrorists
\(\langle 20, 100 \rangle\)
```

```
Save Hostages
\(\langle 10, ∞ \rangle\)
```

```
Save Hostages
\(\langle 10, ∞ \rangle\)
```

```
Medical Attention
\(\langle 0, ∞ \rangle\)
```

```
Arrest
\(\langle 0, 50 \rangle\)
```

```
Surveil
\(\langle 0, 45 \rangle\)
```

Average Domain Size in DCOP: \(∞\)
Syntax: \(\langle\text{Earliest Start Time, Latest Start Time}\rangle\)

Example

Mitigate Crisis
\(\langle 0, 75 \rangle\)

- Save Hostages
 - Extract Hostages
 - \(\langle 10, 30 \rangle\)
 - Medical Attention
 - \(\langle 0, \infty \rangle\)

- Capture Terrorists
 - Arrest
 - \(\langle 0, 50 \rangle\)
 - Surveil
 - \(\langle 0, 45 \rangle\)

Average Domain Size in DCOP: \(\infty\)
Syntax: \(\langle \text{Earliest Start Time, Latest Start Time} \rangle \)

Example

Mitigate Crisis
\(\langle 0, 75 \rangle \)

Save Hostages
\(\langle 10, 30 \rangle \)

Capture Terrorists
\(\langle 20, 100 \rangle \)

Extract Hostages
\(\langle 10, 30 \rangle \)

Medical Attention
\(\langle 0, \infty \rangle \)

Arrest
\(\langle 0, 50 \rangle \)

Surveil
\(\langle 0, 45 \rangle \)

Average Domain Size in DCOP: \(\infty \)
Syntax: \(\langle \text{Earliest Start Time, Latest Start Time} \rangle\)

Example

- **Mitigate Crisis**: \(\langle 0, 75 \rangle\)
 - **Save Hostages**: \(\langle 10, 30 \rangle\)
 - **Extract Hostages**: \(\langle 10, 30 \rangle\)
 - **Medical Attention**: \(\langle 10, \infty \rangle\)
 - **Capture Terrorists**: \(\langle 20, 100 \rangle\)
 - **Arrest**: \(\langle 0, 50 \rangle\)
 - **Surveil**: \(\langle 0, 45 \rangle\)

Average Domain Size in DCOP: \(\infty\)
Syntax: \langleEarliest Start Time, Latest Start Time\rangle

Example

- **Mitigate Crisis**
 - $\langle 0, 75 \rangle$

- **Save Hostages**
 - $\langle 10, 30 \rangle$

- **Capture Terrorists**
 - $\langle 20, 100 \rangle$

- **Extract Hostages**
 - $\langle 10, 30 \rangle$

- **Medical Attention**
 - $\langle 10, \infty \rangle$

- **Arrest**
 - $\langle 0, 50 \rangle$

- **Surveil**
 - $\langle 0, 45 \rangle$

Average Domain Size in DCOP: ∞
Syntax: \(\langle\text{Earliest Start Time, Latest Start Time}\rangle\)

Example

Mitigate Crisis
\(\langle 0, 75 \rangle\)

- Save Hostages
 \(\langle 10, 30 \rangle\)
 - Extract Hostages
 \(\langle 10, 30 \rangle\)
 - Medical Attention
 \(\langle 10, 30 \rangle\)

- Capture Terrorists
 \(\langle 20, 100 \rangle\)
 - Arrest
 \(\langle 0, 50 \rangle\)
 - Surveil
 \(\langle 0, 45 \rangle\)

Average Domain Size in DCOP: 33.75
Syntax: \(\langle \text{Earliest Start Time, Latest Start Time} \rangle \)

Example

- **Mitigate Crisis**
 \(\langle 0, 75 \rangle \)
 - **Save Hostages**
 \(\langle 10, 30 \rangle \)
 - **Extract Hostages**
 \(\langle 10, 30 \rangle \)
 - **Medical Attention**
 \(\langle 10, 30 \rangle \)
 - **Capture Terrorists**
 \(\langle 20, 100 \rangle \)
 - **Arrest**
 \(\langle 0, 50 \rangle \)
 - **Surveil**
 \(\langle 0, 45 \rangle \)

Average Domain Size in DCOP: 33.75
Syntax: \(\langle\text{Earliest Start Time, Latest Start Time}\rangle\)

Example

- **Mitigate Crisis**: \(\langle 0, 75 \rangle\)
- **Save Hostages**: \(\langle 10, 30 \rangle\)
- **Capture Terrorists**: \(\langle 20, 75 \rangle\)
 - **Extract Hostages**: \(\langle 10, 30 \rangle\)
 - **Medical Attention**: \(\langle 10, 30 \rangle\)
 - **Arrest**: \(\langle 0, 50 \rangle\)
 - **Surveil**: \(\langle 0, 45 \rangle\)

Average Domain Size in DCOP: 33.75
Syntax: \(\langle \text{Earliest Start Time, Latest Start Time} \rangle \)

Example

- **Mitigate Crisis** \(\langle 0, 75 \rangle \)
 - **Save Hostages** \(\langle 10, 30 \rangle \)
 - **Capture Terrorists** \(\langle 20, 75 \rangle \)
 - **Extract Hostages** \(\langle 10, 30 \rangle \)
 - **Medical Attention** \(\langle 10, 30 \rangle \)
 - **Arrest** \(\langle 0, 50 \rangle \)
 - **Surveil** \(\langle 0, 45 \rangle \)

Average Domain Size in DCOP: 33.75
Syntax: \(\langle \text{Earliest Start Time, Latest Start Time} \rangle \)

Example:

- **Mitigate Crisis**: \(\langle 0, 75 \rangle \)
 - **Save Hostages**: \(\langle 10, 30 \rangle \)
 - **Capture Terrorists**: \(\langle 20, 75 \rangle \)
 - **Extract Hostages**: \(\langle 10, 30 \rangle \)
 - **Medical Attention**: \(\langle 10, 30 \rangle \)
 - **Arrest**: \(\langle 20, 50 \rangle \)
 - **Surveil**: \(\langle 0, 45 \rangle \)

Average Domain Size in DCOP: 28.75
Syntax: \(\langle \text{Earliest Start Time, Latest Start Time} \rangle \)

Example

- **Mitigate Crisis** \(\langle 0, 75 \rangle \)
 - **Save Hostages** \(\langle 10, 30 \rangle \)
 - **Capture Terrorists** \(\langle 20, 75 \rangle \)
 - **Extract Hostages** \(\langle 10, 30 \rangle \)
 - **Medical Attention** \(\langle 10, 30 \rangle \)
 - **Arrest** \(\langle 20, 50 \rangle \)
 - **Surveil** \(\langle 0, 45 \rangle \)

Average Domain Size in DCOP: 28.75
Syntax: $\langle \text{Earliest Start Time, Latest Start Time} \rangle$

Example

- **Mitigate Crisis**
 - $\langle 0, 75 \rangle$
 - **Save Hostages**
 - $\langle 10, 30 \rangle$
 - **Capture Terrorists**
 - $\langle 20, 75 \rangle$
 - **Extract Hostages**
 - $\langle 10, 30 \rangle$
 - **Medical Attention**
 - $\langle 10, 30 \rangle$
 - **Arrest**
 - $\langle 20, 50 \rangle$
 - **Surveil**
 - $\langle 20, 45 \rangle$

Average Domain Size in DCOP: 23.75
Syntax: \langleEarliest Start Time, Latest Start Time\rangle

Example

- Mitigate Crisis: $\langle 0, 75 \rangle$
- Save Hostages: $\langle 10, 30 \rangle$
- Capture Terrorists: $\langle 20, 75 \rangle$
 - Extract Hostages: $\langle 10, 30 \rangle$
 - Medical Attention: $\langle 10, 30 \rangle$
 - Arrest: $\langle 20, 50 \rangle$
 - Surveil: $\langle 20, 45 \rangle$

Average Domain Size in DCOP: 23.75
Constraint Propagation

Idea

Ensure arc consistency by propagating bound information forward down the NLE chains.

Example

\[M_1 \]
\[\rightarrow \]
\[M_2 \]

\[\text{time} \]
Idea

Ensure arc consistency by propagating bound information forward down the NLE chains.

Example

\[M_1 \]

\[M_2 \]

---------- time ----------
Constraint Propagation

Idea
Ensure arc consistency by propagating bound information forward down the NLE chains.

Example

\[\xymatrix{ & M_1 & \\ M_2 & & \text{Expected duration of } M_1 } \]

We provide a distributed algorithm to perform constraint propagation.
Idea

Ensure arc consistency by propagating bound information forward down the NLE chains.

Example

\[M_1 \]
\[M_2 \]

Expected duration of \(M_1 \)

We provide a distributed algorithm to perform constraint propagation.

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Approach

Task Scheduling Problem

Representation

C_TÆMS

Algorithms

DCOP

Schedule

Optimizations

Measurement

Macro Agent Transport Event-Based Simulator (MATES)

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Motivation
Approach
Summary of Contributions

Measurement and Empirical Analysis
Conclusions and Future Work

Approach

Task Scheduling Problem

Representation
- C_TÆMS

Algorithms
- DCOP

Schedule

Optimizations
Measurement

Macro Agent Transport Event-Based Simulator (MATES)

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Research community provided random scenario generator.\(^a\)

Randomly-generated set of 100 DSC\(_{TAEMS}\) instances

- 4 agents,
- 3–4 windows\(^b\)
- 1–3 agents per window, and
- 1–3 NLE chains.
- Avg. 80 Variables
- Domains of avg. cardinality 124

ADOPT (Modi, Shen, Tambe, & Yokoo, 2005)

MATES (Sultanik, Peysakhov, & Regli, 2005)

Static Network

Cycles & Solvability

\(^a\)http://www.coordin8.net/

\(^b\)“Windows” are tasks whose parent is the task group (i.e., they are tasks at the second layer from the root in the HTN).
Naïve Bounding by itself is insufficient.

95% certainty that Constraint Propagation made an average domain size reduction of 7.62% over those of Bounds Propagation (upper one-sided paired t-test).

Using all three techniques 26% became solvable.
Conclusions

- Presented a mapping from a subset of the C_TÆMS modeling language to an equivalent DCOP.
- Domain bounding heuristics that render solvability.
- Demonstrated efficacy of existing algorithm on mapping.

Future Directions

- Extend DSC_TÆMS to subsume larger subset of C_TÆMS.
- Hierarchical solution.
- Dynamic Re-Scheduling.
- Simulation over disruption-prone Mobile Ad-Hoc Networks (using MATES) → reduce network overhead.
Conclusions

- Presented a mapping from a subset of the C_TÆMS modeling language to an equivalent DCOP.
- Domain bounding heuristics that render solvability.
- Demonstrated efficacy of existing algorithm on mapping.

Future Directions

- Extend DSC_TÆMS to subsume larger subset of C_TÆMS.
- Hierarchical solution.
- Dynamic Re-Scheduling.
- Simulation over disruption-prone Mobile Ad-Hoc Networks (using MATES) → reduce network overhead.
Thank you for your time and attention!

Evan Sultanik
evan@sultanik.com
http://www.cs.drexel.edu/~eas28/

Jay Modi
 pmodi@cs.drexel.edu
http://www.cs.drexel.edu/~pmodi/

Bill Regli
 regli@drexel.edu
http://www.cs.drexel.edu/~regli/
Related Work in Multi-Agent Scheduling

Musliner, et al., 2006:
map C_TAEMS to a MDP;

Smith, et al., 2006:
address dynamic schedule revision using Simple Temporal Networks;

Phelps and Rye, 2006:
address this same problem through Generalized Partial Global Planning; and

Cornell C_TAEMS Scheduler:
offline and omniscient.
Related Work in Multi-Agent Scheduling

Musliner, et al., 2006: map C_TAEMS to a MDP;

Smith, et al., 2006: address dynamic schedule revision using Simple Temporal Networks;

Phelps and Rye, 2006: address this same problem through Generalized Partial Global Planning; and

Cornell C_TAEMS Scheduler: offline and omniscient.

Problem: Existing approaches are centralized!
Measurement and Empirical Analysis

<table>
<thead>
<tr>
<th># Windows</th>
<th># NLE Chains</th>
<th>% Soluble Naïve</th>
<th>Avg. # Cycles Naïve</th>
<th>Avg. # Messages Naïve</th>
<th>Avg. # Cycles CP</th>
<th>Avg. # Messages CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>40.00</td>
<td>-</td>
<td>143.87</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>36.67</td>
<td>-</td>
<td>143.40</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>46.67</td>
<td>-</td>
<td>220.73</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>33.33</td>
<td>-</td>
<td>83.89</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>11.76</td>
<td>-</td>
<td>66.18</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>33.33</td>
<td>-</td>
<td>108.72</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>60.00</td>
<td>-</td>
<td>122.1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>60.00</td>
<td>-</td>
<td>242.4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>50.00</td>
<td>-</td>
<td>248.8</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0</td>
<td>41.67</td>
<td>-</td>
<td>196.42</td>
<td>-</td>
</tr>
</tbody>
</table>

* This is the default configuration for the C_TÆMS scenario generator.
<table>
<thead>
<tr>
<th># Windows</th>
<th># NLE Chains</th>
<th>% Soluble Naïve</th>
<th>Avg. # Cycles Naïve</th>
<th>Avg. # Cycles CP</th>
<th>Avg. # Messages Naïve</th>
<th>Avg. # Messages CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>40.00</td>
<td>-</td>
<td>143.87</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>36.67</td>
<td>-</td>
<td>143.40</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>46.67</td>
<td>-</td>
<td>220.73</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>33.33</td>
<td>-</td>
<td>83.89</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>11.76</td>
<td>-</td>
<td>66.18</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>33.33</td>
<td>-</td>
<td>108.72</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>60.00</td>
<td>-</td>
<td>122.1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>60.00</td>
<td>-</td>
<td>242.4</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>50.00</td>
<td>-</td>
<td>248.8</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0</td>
<td>41.67</td>
<td>-</td>
<td>196.42</td>
<td>-</td>
</tr>
</tbody>
</table>

* This is the default configuration for the C_TAEMS scenario generator.
On Modeling Multi-Agent Task Scheduling

Sultanik, Modi, and Regli

Department of Computer Science

Drexel University
Results

Bandwidth Usage (Messages Sent * Hops Per Message) vs. Simulated Time to Optimal Solution

Uncoupled

Coupled

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Results

![Graph showing Bandwidth Usage (Messages Sent * Hops Per Message) vs. Simulated Time to Optimal Solution with three curves for Uncoupled, Optimized, and Coupled models. The graph includes a detailed inset chart with data points for each category.]

- **Uncoupled**
- **Optimized**
- **Coupled**

Bandwidth Usage (Messages Sent * Hops Per Message)

Simulated Time to Optimal Solution

Sultanik, Modi, and Regli

On Modeling Multi-Agent Task Scheduling
Results

5% Bandwidth Reduction with No Additional Computation Time
The problem of finding an optimal schedule is \(\mathcal{NP}\)-hard.
The problem of finding an optimal schedule is \(\mathcal{NP} \)-Hard.

Proof.
Reduction from \(k \)-coloring of graphs. Given a graph \(G = \langle V, E \rangle \), create one agent in \(N \) for each \(v \in V \). Create \(k \) methods associated with each agent, one for each of the \(k \) colors. Therefore, \((\forall a \in N : |\mu^{-1}(a)| = k)\), and \(|M| = k|V|\). Define each method as \(\langle 0, 0, 0 \rangle \), meaning that each method can either be executed at time 0 or it will not be executed at all. The mutex constraints will ensure that each agent can only have at most one method executed...
Proof Sketches

Theorem

The problem of finding an optimal schedule is \(\mathcal{NP} \)-HARD.

Proof.

...Create an enables NLE (*i.e.* precedence constraint) between all pairs of methods associated with like colors on adjacent vertices. Since each method has only one feasible start time, these NLEs ensure that two adjacent vertices cannot have two methods of the same color scheduled to execute. Creating this mapping will require \(\binom{n}{2} 2k = O(n^2) \) operations, which is \(\in \mathcal{P} \).
Theorem

The proposed method of naïve domain bounding will not result in suboptimal solutions.
Theorem

The proposed method of naïve domain bounding will not result in suboptimal solutions.

Proof.

The longest possible C$_{TÆMS}$ schedule duration will occur when all of the methods are chosen to execute. A schedule will have a maximal completion time when there exists an enables NLE chain over all of the methods, rooted at the method with maximum earliest start time. There might be an infinite number of optimal solutions to a C$_{TÆMS}$ instance. All optimal schedules, however, will have the same quality as the schedule in which all of the methods are executed, in order, starting with the method with maximum earliest start time. . .
Theorem

The proposed method of naïve domain bounding will not result in suboptimal solutions.

Proof.

Let us assume, on the contrary, that the optimal schedule *does not* execute all methods, yet the naïve bounding *does* prune the optimal solution. The only way this can be the case is if some method’s optimal execution time were *greater* than the maximum start time plus the longest possible duration, which would mean such a schedule would be longer than the longest possible duration: a contradiction.