DIANE - An Integration Approach to Automated Service Discovery, Matchmaking and Composition

Summary by: Ben Rockstroh

July 20, 2009
Develop an automated matcher that is able to compose services, provides fine-grained and precedes ranking among competing offers (single offers and automatically composed ones) and is able to automatically invoke the best offer.
DIANE Service Descriptions (DSD)

Based on a light weight custom ontology designed for service descriptions. Provides the ability to rank effects.

- **Operational elements** - Specify the world-altering affects that are desired from a service.

 e.g. Shipping a screw from France to Germany.

- **Aggregating elements** - Specify acceptable "extra" effects a service may have.

 e.g. I want a netbook, so I'll buy FIOS

- **Selecting Elements** - Used to specify elements that are to be selected from a service.

 e.g. I want book A from Amazon.

- **Rating Elements** - Used to rate desired affects.

 e.g. \((0.3 \times \text{shippingTime} + 0.7 \times \text{price})\) - price is more important than shipping.
Simplified Shipping Request

- **request**: Service

- **upper**: ServiceProfile

- **Address**: toAddress

- **name**: String, "Mr. Barney Gumble"

- **street**: String, "320 East 7th Street"

- **zipCode**: String, "10021"

- **city**: City, "newyork"

- **Shipped**:

- **toAddress**: String

- **cargo**: String

- **price**: String

- **shippingTime**: String

- **Duration**: String

- **Price**:

- **domain.measure**: WeightMeasure

- **domain.measure**: WeightUnit

- **Currency**: String, "usd"
Single Effect Matching

Since DSD requests descriptions are trees stemming from roots (ontology concepts) single effect matching becomes a simple graph matching problem.

Problems Extending to Multiple Effects: Services containing multiple effects usually contain relations between the effects. e.g. Ordering a screw and having it shipped to your location.
Service1 - Orders the screw at factory A.
Service2 - Needs to ship the screw from factory A to your location.
Intuitive DSD Request for Multiple Effects
Value Propagation

The Idea: I care more about finding a service that does A then I do B. This allows the user to select what services the algorithm should look at first avoiding an exponential combination of services.
Matching Multiple Effects

- **Plug-in Matching**
 - Check all offers for ability to fulfill a subset of the requested effects.

- **Computing Compositions**
 - Compute all possible compositions (coverages) so that every effect is covered by an offer exactly once.
 - Prepare for value matching - compute cut on the parameters involved.
 - Restrict concrete parameters to those involved in cut. i.e. Ignore parameters that are not needed.
Matching Multiple Effects Continued

- **Final Result Computation**
 - Optimally configure each offer with respect to user defined *rating elements*.
 - Compute matching values for coverage.
 - *e.g.* *Service1* has a calculated value of 0.7. *Service2* and *Service3* combine to provide the same service as *Service1* and have calculated values of 0.9 and 0.7 respectively. Thus the resulting service has a calculated value of 0.72 and would be more desirable.
Analysis

<table>
<thead>
<tr>
<th>Component</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prematch</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Plug-In Match</td>
<td>$O(\sigma_1 \cdot n \cdot m)$</td>
</tr>
<tr>
<td>Computing Compositions</td>
<td>$O((\sigma_1 \sigma_2 \cdot n)^{const})$</td>
</tr>
<tr>
<td>Result Computation</td>
<td>$O(\sigma_3 \cdot (\sigma_1 \sigma_2 n)^{const} \cdot m)$</td>
</tr>
</tbody>
</table>

Table 1: Overview: Complexity of the components

<table>
<thead>
<tr>
<th>n</th>
<th>Overall number of offered services</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Mean number of different configurations of an offer effect</td>
</tr>
<tr>
<td>σ_1</td>
<td>Selectivity of the pre-matcher, $\sigma_1 \ll 1$</td>
</tr>
<tr>
<td>σ_2</td>
<td>Selectivity of the plug-in-matcher, $\sigma_2 < 1$</td>
</tr>
<tr>
<td>σ_3</td>
<td>Selectivity of the composition-process, $\sigma_3 < 1$</td>
</tr>
</tbody>
</table>

Table 2: Meaning of the variables.
http://hnsp.inf-bb.uni-jena.de/DIANE/en/
Scalability

Concerned with 3 parameters

- Size of decryption (number of requested effects)
 Considered a constant since effects need to be related.
 Thought to be no more than 10.

- Number of available offers.
 Pre-matching performs linear search for appropriate offers.

- Number of ways to configure and offer.
 This can be in the hundreds of thousands though is reduced drastically by Value Propagation.