Automated Composition of Semantic Web Services into Executable Processes

P. Traverso and M. Pistore
ITC-IRST - University of Trento
traverso@itc.it - pistore@dit.unitn.it

Summary by:
Ngoc-Tung Nguyen
1. the user asks P&S for an article a, that he wants to be transported at location l;

2. P&S asks the producer for some data about the article, namely its size, the cost, and how much time does it take to produce it;

3. P&S asks the delivery service the price and time needed to transport an object of such a size to l;

4. P&S provides the user an offer which takes into account the overall cost (plus an added cost for P&S) and time to achieve its goal;

5. the user sends a confirmation of the order, which is dispatched by P&S to the delivery and producer.
Overview of the Approach

1. OWL-S Process Models
 - Given a set of available web services $(W_1, ..., W_n)$

2. State Transition System
 - Encodes each W_i into a state transition system
 - Provides a sort of operational semantic to the model
 - Each model describes the corresponding web services as a state-based dynamic (evolving) system
 - Partially control
 - Partially observable by external agent
 - Represent all possible behavior

3. MBP Planner
 - Inputs:
 - Composition Goal (Requirements)
 - Described in the EaGle Language
 - Planning domain (Σ)
 - Out Put
 - An automaton that depends on the observation and on its internal state states, can execute actions