

ENME 489L: Biologically Inspired Robotics

Satyandra K. Gupta and Arvind Ananthanarayanan Department of Mechanical Engineering and Institute for Systems Research University of Maryland

Course Introduction

- Class Time: Tuesday and Thursday 2PM to 3:15PM
- Class Location: JMP
- Office Hours: Tuesday and Thursday 3:30PM to 5:00PM
- Course Instructor: Dr. Satyandra K. Gupta
 - Email: <u>skgupta@umd.edu</u>
 - Phone: 301-405-5306,
 - Office: Room 2135 EGR
- Course Co-Instructor: Arvind Ananthanarayanan
 - Email: arvinda@umd.edu
 - Phone: 301-405-0436
 - Office: Room 0124 EGR

- Fundamentals of Traditional Robots
- Fundamentals of Biologically Inspired Robots
- Design and Fabrication of Biologically Inspired Robots

Textbook

• J.J. Craig. *Introduction to Robotics: Mechanics and Control.* Prentice Hall; 3rd edition, 2003.

Additional References

- G. A. Bekey. *Autonomous Robots*. MIT Press, 2005.
- Karl Williams. *Amphibionics: Build Your Own Biologically* Inspired Reptilian Robot. McGraw-Hill/TAB Electronics, 2003.
- David Cook. *Robot Building for Beginners*. Apress, 2002.

- 8 Homeworks (done individually) (20% of the overall grade)
- Projects (done in groups of 3) (40% of the overall grade)
- 1 Final Exam (40 % of the overall Grade)

Project

- Design a 4 legged bio-inspired robot (no wheels) that can perform the following function
 - Travel on a straight line 25 times its body's largest dimension in two minutes or less
- Other information
 - Main emphasis is on mechanical design to reproduce kinematics of a gait
 - Use FDM to make structures
 - Some programming is needed
 - Use off-the-shelf motors

- You will need to demonstrate your robot on two different surfaces
 - Parking lot
 - Carpeted floor
- The slop of the surface will be less than 5 degrees and the test will be done on the dry surface

- The final project submission will consist of a written report describing the robot design, performance test results, manufacturing process description, and engineering drawings
- You will also need to submit Pro/Engineer models of your design

- Mechanical structure (created using FDM)
- Controller board (~ \$25)
- Batteries (~ \$20 to \$30)
- Motors (~ \$15 per motor)
- Department budget is \$150 per robot

Samples of Robots Built in Spring 2007

Ant Robot

Beetle Robot

Crocobot

Fire Ant Robot

Ladybug Robot

Lizard Robot

Tiggerbot

- Team consisting of three students
- Team member names should be sent to <u>skgupta@umd.edu</u> by 6PM on Sunday February 3rd

Robotics Preliminaries

Origin: Karel Capek's play *R.U.R.* (1921) Czech: *robota* – servitude, forced labor

- "A machine (sometimes resembling a human being in appearance) designed to function in place of a living agent, esp. one which carries out a variety of tasks automatically or with a minimum of external impulse."
 - Oxford English Dictionary
- "A reprogrammable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks."
 - The Robot Institute of America

Why Use Robots?

Why Use Robots?

For tasks that are . . .

Hazardous

LAPD Bomb Squad

Repetitious

Automated car painting

Dexterous

Automotive welding

Circuit board manufacturing

• Inaccessible

DaVinci robot for cardiothoracic surgery

Where Are Robots Being Used?

Robot Applications

- Assembly
- Automotive Welding
- Automotive Paining
- Space Applications
- Explosive Disposal
- Medical
- Entertainment
- Measurement and Inspection
- Machining
- Survey
- Reconnaissance

- Stationary vs. mobile
- Manual vs. programmable vs. autonomous
- Remote operated vs. wired
- Payload size
- Speed of task or motion
- Work volume
- Number of degrees of freedom (DOF)
- Power consumption
- Lifetime

Stationary Robots

Functions

- Gripping/translating
- Inspecting/measuring
- Operating/manipulating
- Applications
 - Manufacturing
 - Machining
 - Assembling
 - Medical devices
 - Spacecraft

Automobile manufacturing

ISS and Endeavor handoff

Mobile Robots

- Mobile platforms, with other robots attached
- Primary function: locomotion
- Applications
 - Transportation platform
 - Exploration
 - Reconnaissance
 - Surveillance

NASA Mars rover

Maridan 600 UUV

- Applications (continued)
 - **Consumer products**

Roomba vacuum

Robomower

Honda Asimo

Sony Aibo

Remote controlled car

Examples of Bio-Inspired Robots