TRANSFORMATION IN Variant SHAPE SIMILARITY COMPARISON OF SOLID MODELS

David McWherter Mitchell Peabody William C. Regli Ali Shokoufandeh
Geometric and Intelligent Computing Laboratory
Department of Mathematics and Computer Science
Drexel University
3141 Chestnut Street
Philadelphia, PA 19104
http://gicl.mcs.drexel.edu/
Email: {udmcwher,umpeabod,wregli,ashokouf}@mcs.drexel.edu

ABSTRACT

This paper presents two complementary approaches to comparing the shape and topology of solid models. First, we develop a mapping of solid models to Model Signature Graphs (MSGs)—labeled, undirected graphs that abstract the boundary representation of the model and capture relevant shape and engineering attributes. Model Signature Graphs are then used to define metric spaces over arbitrary sets of solid models. This paper introduces two such metric spaces: first, a mapping of MSGs to a high-dimension vector space where euclidean distance measures are applied; second, a distance computation performed between graph spectra constructed from MSGs using spectral graph theoretic techniques.

In practice, exact computation of the edit distance between model signature graphs is believed to be an NP-hard problem. We show that properties of the design signature graph’s spectra, derived from the eigenvalues of its adjacency matrix, can be used as an efficient and tractable approximation of the edit distance.

Lastly, we provide empirical results using real test data from the National Design Repository (http://www.designrepository.org) to validate our approach. We argue comparisons among solid models in these metric space are immune to problems caused by inexactness and ambiguity arising from basic modeling transformations (scale, translation, rotation, shear, etc.). It is our belief that this work contributes to a growing body of techniques for comparing models and indexing CAD media types in database systems.

Keywords: Similarity Assessment of Solid Models, Shape Matching, Design for Manufacture, Variational Process Planning.

INTRODUCTION

Solid models have become integral to modern design and manufacturing. As a byproduct of the legacy of manufacturing processes are collections of these models which represent various products at assorted stages of completion. In order to understand this data, and the relationships between models, it is essential to perform similarity assessments between them.

Primarily, similarity assessments are done in either a one-to-one or a one-to-many basis. One-to-one comparisons between models can be used to further understand the relationship and similarities between two objects. These analyses would be useful in discovering whether two parts may share manufacturing techniques, or share design substructures. One-to-many comparisons would find usage in database applications, in which one model is compared to a set of other models in the database.

We develop a representation of solid models as an attributed
graph based on a common boundary-representation (BRep) for solid models, called Model Signature Graphs (MSG). We then make use of this graph representation in order to compute the similarity of the solid models. We put forth two similarity measurements based on MSGs, one based on structural graph invariants, and the other based on techniques of spectral graph theory.

BACKGROUND AND RELATED WORK

Similarity Assessment of Solid Models

Wysk et al. (Sun et al., 1995) have examined solid model similarity assessment using boundary-representations of the models being compared. Their approach, to construct a graph that describes the adjacency of faces in the solid model, is very similar to ours. Unfortunately, their approach has a number of drawbacks which makes their similarity assessment less than ideal. First, the system is only capable of handling polyhedral objects—more complicated objects involving smooth curved surfaces must be approximated with planar surfaces. Additionally, the similarity measure that is used is not symmetric. The measure of similarity between models A and B may not necessarily be the same as the similarity between model B and A. This problem leads to difficulty in using the similarity measure as an aid to index models using common database schemes, which rely on symmetry.

Cicirello and Regli (Regli and Cicirello, 2000; Cicirello and Regli, 1999; Cicirello, 1999) have developed graph-based methods for determining whether two models are identical, or exhibit substructure similarity. This approach makes use of feature information used to construct a solid model, storing it in a canonical graph-structure known as a Model Dependency Graph. These structures are then compared against each other to determine whether they are isomorphic, or have a subgraph isomorphic relationship. The central problem with this approach is that it lacks the granularity required for practical similarity assessment—it is only able to give a boolean response that two graphs are the same, or not. Another significant problem is that it is assumed that feature information is available, either directly or via a feature recognizer, to construct a canonical representation of the model. Unfortunately, this information, which describes how a model is constructed, is frequently not available in practical databases of solid models, and is difficult (if not impossible) to generate from models.

Comparisons of Shape Models

A considerable amount of work has been done in the field of computer vision in Shape Recognition of solid objects. Typically, the approaches here assume that there is some sensed input of the shape or object being recognized, as well as a database of solid models. Geometric Hashing is typically used in shape recognition, comparing a simple representation of the structure of the shape being examined, and the representations for the models available in the database.

A common approach to computing model similarity in the field of computer vision naturally involves making use of a projection of the solid model into a 2-dimensional space (such as a photograph), where the input signal is compared to the projections of model objects in a database. Given that most information about the 3-d (or higher dimensional) properties of the model are thrown away in the projection phase, techniques that make more use of the system have been developed.

Aspect graphs are a common mechanism for dealing with models whose geometry and configuration are completely known. This approach computes all possible appearances that an object may take when viewed by an observer (commonly using a projection from 3-d to 2-d space, for instance). These views are stored in a graph whose edges associate views when a simple spatial transformation may directly transform one view into another.

Aspect graphs, however, are difficult to compute for arbitrary solid models, and are typically restricted to objects whose boundaries can be described by simple polygonal structures or surfaces surfaces of revolution. Practical models are much more complicated, however, having combinations of smooth, and polygonal surfaces. Known techniques for dealing with these more complicated systems are computationally intractable (Petitjean, 1996).

Graph-based Representations

In the field of pattern recognition, a number of approaches have been set forth to determine similarities between graphs. Primarily, these approaches are to construct a similarity measurement based on metric distance functions. The metric property enables the measurement to be used to aid in indexing collections of graph structures in database applications.

Kubica et al. (Kubiczka et al., 1990) make use of a distance metric known as edit-distance. Edit distance is defined as the smallest number of edge rotations or additions that are needed to transform one graph into another graph. Unfortunately, computing this property of a graph is believed to be NP-hard, and no well-known approximation algorithms exist to compute it with bounded error.

In addition to similarity measures based on edit-distance, a number of researchers make use of similarity measures based on the maximal common subgraph shared between two graphs (Bunke and Shearer, 1997). The technique finds the maximal common subgraph between two graphs, and computes its size with respect to the size of the graphs themselves. This measurement also constitutes a distance metric, and is also believed to
be NP-hard. Approximation algorithms to compute the maximal common subgraph, however, are more readily available than those for edit-distance, however. The methodologies we develop in this paper provide similarity measures that may be used as an approximate distance metric whenever applicable.

![Figures: Wireframe, Hidden Lines Removed, Model Signature Graph](Figures)

Figure 1. Representations of the *Torpedo* model as a solid model and MSG.

PROBLEM STATEMENT AND TECHNICAL APPROACH

Model Signature Graphs

We make use of a specialized graph structure in order to represent solid models in order to perform similarity comparisons. This structure, called a *Model Signature Graph (MSG)*, is constructed from the boundary representation of a solid model in a manner similar to that by Wysk et al. (Sun et al., 1995) and the Attributed Adjacency Graph (AAG) structures used to perform Feature Recognition from solid models (Joshi and Chang, 1988).

The boundary representation (BRep) (Hoffmann, 1989) essentially consists of a set of edges and a set of faces used by the solid modeler to describe the shape of the model in 3-dimensional space. An MSG for a solid model P is defined as a labeled graph, $G = (V,E)$, where each face $f \in P$ is represented as a vertex $v \in V$, with attributes that further describe the qualities of the face in the model. For instance, we record the type of the surface (e.g., flat or curved), the relative size, and other physical attributes of the face with the vertex, including:

1. topological identifier for the face (planar, conical, etc.);
2. underlying geometric representation of the surface, i.e. the type of function describing the surface;
3. surface area, f_{area}, for the face;
4. set of surface normals or aspects for f.

An MSG edge $< f_1, f_2 > \in E$ exists whenever two faces $f_1, f_2 \in P$ adjacent—i.e., when f_1 and f_2 meet at an edge e in the BRep. The MSG edge $< f_1, f_2 >$ is attributed with features representing the type of BRep edge, e, connection that is being used, including:

1. topological identifier for the edge e in the model P;
2. concavity/convexity of e;
3. underlying geometric representation of the curve of e, i.e. the type of function describing the curve;
4. the length of the curve of e.

Thus, MSGs are representable as undirected graphs with labeled edges and vertices. MSGs are capable of representing either individual parts or collections of parts—the connected components within the MSG each represent one of the parts making up the collection. There is no significant restriction on the attributes stored on the vertices and edges in a MSG. The selection to be used in applied systems will most likely be tailored to meet the needs of the particular application. We assume that for the most part, little information aside from the BRep is available for the construction of MSGs.

These attributes represent a substantial amount of the structure contained within common BRep models, and will enhance model comparisons by aiding in the differentiation of edges and faces in the models. In addition, the attributes are easily computed from BRep models, which make them extremely practical.

We believe that some attributes, such as the modeling features that are used to generate faces and edges in the BRep, may be very important in the matching process during practical use. Unfortunately, deriving this information from pure BRep data is an extremely difficult process, and may not be worth the gains in performance of the similarity measures. Further work must be done before we incorporate such attributes in our MSGs for comparisons.

Example. Figure illustrates a transformation from the boundary representation of the solid model for a torpedo motor into a Model Signature Graph. The complexity of the relationships between the faces and edges in the BRep of this model gives a
good idea of the difficulty of performing shape similarity based on BRep data. Good practical algorithms in the research literature for determining the similarity of adjacency structures of this form are scarce. Making use of MSGs for similarity assessment proves to be an extremely challenging problem to solve.

Metric Spaces of Solid Models

A metric space is a collection of objects along with a distance function, \(\delta() \), known as the metric, which computes a distance between any two elements in the set. The distance function \(\delta(x,y) \) must satisfy a few conditions:

\[
\begin{align*}
\delta(x,y) &= 0 \iff x = y &: \text{Identity} \\
\delta(x,y) &\geq 0 &: \text{Positivity} \\
\delta(x,y) &= \delta(y,x) &: \text{Symmetry} \\
\delta(x,y) + \delta(y,z) &\geq \delta(x,z) &: \text{Triangle Equality}
\end{align*}
\]

A collection of objects may naturally have more than one distance function, inducing a number of metric spaces that are able to be constructed over the objects.

The constraints provided by the distance metric provides a significant amount of structure that can be exploited when working with metric spaces. Recently, in the field of databases and indexing, a large amount of research has been put forth to store data in metric spaces using various tree-structures (Brin, 1995; Ciaccia et al., 1997; Fu et al., 2000) for efficient search and retrieval. Additionally, clustering and knowledge-discovery techniques such as k-means or k-median make use of metric distance functions to order and discover patterns and statistical distribution of data.

We believe that a number of metric distance functions can be used to perform similarity assessment of the shapes of solid models. These functions constitute a “plug-in” module that can be tailored to perform a wide range of similarity measures based on the nature of the application.

In order to make use of distance metrics in a practical system, they must be relatively easy to compute. Unfortunately, it is still an open question what the computational complexity of computing exact distance metrics is.

Given a machine to compute a distance metric between two graphs, one can trivially decide whether two graphs are isomorphic. They are isomorphic if and only if the distance between them is zero. As a result, graph isomorphism is Turing-reducible to the computation of any graph distance metric, and asymptotic computing time will be related to the complexity of algorithms to compute graph isomorphism.

Graph isomorphism is a problem that has been studied for decades due to its wide range of applications. Despite the large amount of energy spent on the problem, no algorithm has been developed that has reduced its worst-case running time to sub-exponential. Surprisingly, it is also unknown whether the problem is truly NP-hard or not.

The difficulties involved in understanding and solving the graph distance metric problem dictates the development of approximation algorithms to efficiently compute distances between Model Signature Graphs.

Graph Invariance Vectors

The eventual aim of our work is to enable indexing and quick retrieval of a large repository of CAD models. Although, a measure such as edit distance provides a proven metric for graph similarity, the cost of running the algorithm is much too high for a database that could potentially consist of thousands of designs. Using graph invariants, we can form groups, or clusters of potentially isomorphic graphs, or graphs that are close enough in similarity to satisfy a query. Since the goal of this paper is simply to show that clustering based on invariants is a useful means to an end, various clustering methods have been chosen to illustrate feasibility. Run-time is not an issue at this point, the primary interest being whether or not the clustering provides suitable results for further research.

The graph invariants that we focus on are directly related to the degree sequence of a graph. The degree sequence, while not the most powerful invariant known, is easily computable, and can be exploited to recover general structural properties of the graph. We attempt to construct these invariants such that they are normalized, and do not depend on differences of scale in the number of edges or vertices. The following graph invariants were chosen for inclusion in our system:

1. **Vertex and Edge Count**—Trivially computable graph invariants. Unfortunately, they reveal practically no information about the graph structure, and may be weighted too strongly in the comparisons we perform, skewing our similarity metrics.
2. **Minimum and Maximum Degree**—Provide a measurement of the maximum and minimum number of adjacencies between one face and the other faces in the model.
3. **Median and Mode Degree**—Provides a measurement that represents statistically the most common and “average” cardinalities of adjacencies between faces in a model.
4. **Diameter**—The longest path of edge/face crossings between any two faces in the model.
5. **Type Histogram**—Each model BRep contains a set of faces and edges which have various types and features. The analysis and statistical breakdown of these component types is used to further generate a representation of the model.

A set of graph invariants can be used to tell if two graphs have the potential to be isomorphic or not, but can not be used to
give a definitive answer. To clarify, if the invariants of two graphs are different, there is no way the graphs can be isomorphic; if the invariants are all equal, then the graphs may or may not be isomorphic.

We encode a fixed set of invariants as an **Invariant Topology Vector (ITV)**. ITV's gives us the ability to determine a "position" for a graph in the metric space relative to other graphs. Graphs with similar values for invariants will lie in the same region of the metric space.

Using graph invariants helps prune out graphs which have no similarity to a given graph and does not depend on the application of the technique. However, we would like to be able to tailor it to allow more precise measurements.

In generating the MSG from the model, we put labels on the vertices and edges. We would like to use these values in our ITV to give even finer granularity in our assessment. However, since there are varying numbers of vertices and edges in the graphs, the labels can not be used directly. The ACIS Solid Modeler from Spatial Technologies is the modeling system used in our experiments. ACIS has 13 different surface types, and 8 different curve types. We modify the definition of the ITV to include 21 additional values. In effect, we create a histogram of the number of times particular surface and edge types occur in the model. Thus, the ITV is a point in 29 dimensions.

EigenDistance

We primarily focus on techniques of **spectral graph theory** as a basis to approximate graph similarity. Spectral graph theory is the study of the adjacency matrix of graphs using linear algebra — particularly the study of their eigenvalues and how they relate to other properties and features of a graph.

The spectrum of a graph—the sorted eigenvalues of its adjacency matrix, holds a tremendous amount of information related to the structure and the topology of a graph. It has been used in numerous applications for the purposes of graph partitioning (Hendrickson and Leland, 1995) and geometric hashing in vision recognition (Shokoufandeh et al., 1999).

There are a number of different adjacency matrices that are used in spectral graph theory to generate a graph’s spectrum. Biggs (Biggs, 1974), for instance, uses a common form:

\[
A_G(u, v) = \begin{cases}
1 & : \text{ if } u \text{ is adjacent to } v \\
0 & : \text{ otherwise.}
\end{cases}
\]

Chung (Chung, 1997), proposes the use of an alternative "normalized" form of the graph adjacency matrix, which takes into consideration the degrees of the vertices in the graph to determine the entries in the matrix. This form, known as the graph Laplacian, has eigenvalues that have well-known and powerful relationships with other graph properties, such as the graph diameter. The Laplacian is formally defined as follows (\(d_v\) is the degree of node \(v\)):

\[
L_G(u, v) = \begin{cases}
1 & : \text{ if } u = v \text{ and } d_v \neq 0, \\
\frac{1}{\sqrt{d_u d_v}} & : \text{ if } u \text{ and } v \text{ are adjacent,} \\
0 & : \text{ otherwise.}
\end{cases}
\]

In addition to the relationship between the Laplacian spectrum and other graph invariants, as well as the fact that the normalization helps to reduce the effect of irregular degrees on graph vertices, we chose to make use of the Laplacian matrix.

Spectral Hashing A primary goal of the distance metric is to ensure that two identical graphs have no distance between them. In addition, two graphs with only minor differences should consistently be measured relatively closely. To achieve this requirement, we first compute the eigenvalue spectrum of the graph. This operation can be done during a preprocessing phase, and the results stored for later use, if a model of reference Model Signature Graphs are being used in an application. From this point on, we consider this spectrum to be a projection of the graph from the space of graphs to \(R^n\), and we use this space as a basis for most distance computations that make up the metric.

Distance computations between the image of graphs in \(R^n\) are done using any one of a number of vector-based metric norms. In particular, we are investigating the use of \(L_p\), \(L_2\), and other metric metric norms.

Substructure Comparison A reasonable measure of similarity between graphs relies on the concept of shared substructure (Bunke and Shearer, 1997). Semantically, two graphs that have similar common substructures themselves will tend to be similar. We believe that substructure similarity is central to most practical applications of shape recognition.

We make use of substructure information in the following manner. After computing the eigenvalue spectrum for a graph, we partition the graph into two or more subgraphs, removing the edges that cross the partition(s). If this is done wisely, it will isolate highly connected component graphs at each level of the recursion. We generate the eigenvalue spectrum for each component, and recursively partition and index again.

Optimally partitioning a graph to minimize the number (or weight) of the edges that cross the partition is itself an NP-hard problem. In order to make the problem more tractable, we make use of an approximation to partitioning using the eigenvalues that were computed for the graph. This technique, known as **Spectral Graph Partitioning**, puts the vertex of a graph indexed by \(i\) in the
adjacency matrix into one of two subgraphs depending on the sign of the entry indexed by \(i \) in the eigenvector corresponding to the second smallest eigenvalue (also known as the Fiedler Vector). With little added asymptotic complexity, the graph may be recursively broken into subcomponents for further study.

![Solid Model](image1)

![Model Signature](image2)

![Invariant Topology Vectors](image3)

![Eigenvalue Spectra](image4)

Figure 2. An example of our approach: encoding of the spinner3 model into an MSG, which is then used to create the ITV and EigenDistance vector spaces.

AN EXAMPLE

We apply the techniques discussed to construct the ITV's and eigenvalue spectra required to perform distance computations on a simple model available in the National Design Repository (NAT, 2000), to demonstrate the transformations we use to perform shape recognition and matching. We will employ the solid model depicted in Figure 2: the spinner3 model, a simple industrial model with an extremely simple BRep.

ITV. First, we compute the ITV associated with the model. The following table depicts the graph invariant attributes associated with the MSG for spinner3:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Count</td>
<td>24</td>
</tr>
<tr>
<td>Edge Count</td>
<td>63</td>
</tr>
<tr>
<td>Degree Max</td>
<td>2</td>
</tr>
<tr>
<td>Degree Min</td>
<td>17</td>
</tr>
<tr>
<td>Degree Mode</td>
<td>4</td>
</tr>
<tr>
<td>Degree Median</td>
<td>4.00</td>
</tr>
<tr>
<td>Degree Std. Deviation</td>
<td>3.27</td>
</tr>
<tr>
<td>Graph Diameter</td>
<td>3</td>
</tr>
</tbody>
</table>

The computation of these attributes is relatively straightforward. The only attribute that we are currently concerned with that is not computable in time linear in the number of edges is the graph diameter. We are able to compute graph diameter in two ways. In one implementation, the diameter is computed using an all-pairs shortest-path algorithm, such as the Floyd-Warshall algorithm (Corman et al., 1990), which can be computed in \(O(|V|^3) \), for graphs of \(|V| \) vertices. An alternative method uses an upper bound for the diameter, computed from the eigenvalue spectra (Chung, 1997). This upper bound is stated as follows:

\[
D(G) \leq \left[\frac{\log(i - 1)}{\log \left(\frac{\lambda_{i-1} + \lambda_i}{\lambda_{i-1} - \lambda_i} \right)} \right]
\]

where \(\lambda_i \) is the \(i \)-th largest eigenvalue in the eigenvalue spectrum, and \(n \) is the number of eigenvalues in the spectrum (which is equal to the number of vertices in the graph). We investigate the use of this as an approximation of graph diameter as if both our eigenvalue metric and the invariance metrics are being used, the computation of graph diameter is done at effectively no added cost.

Eigenvalue Metric. In order to compute the eigenvalue similarity measure we must first compute the Laplacian matrix for the spinner3 model, and then compute its eigenvalue spectrum. Both the Laplacian matrix \((L)\), and the eigenvalue spectrum \((S)\) computed from the spinner3 model are depicted in Figure 3. We compute the eigenvalues of the system with software packages that use a Householder-QL matrix diagonalization algorithm, which efficiently generates the eigenvalues in time cubic in the number of vertices of the graph.

The ITV and the eigenvalue vector can be compared using standard vector norms in \(R^n \). In the case of comparing graph spectra, small provisions must be made for comparing graphs with differing number of vertices, as spectrum vectors of different lengths must be compared. Currently, we simply remove the smallest eigenvalues from the larger vector, and compute standard \(L_2 \) (Euclidean) and \(L_p \) norms.

EMPIRICAL RESULTS

We investigate the application of the measures on models found in the National Design Repository (NAT, 2000). We have computed the distances between each collection of models using both the eigenvalue spectrum similarity measure (EigenDistance), and the graph invariant topology vector measure (ITVDistance). The EigenDistance computations that we have done make use of a non-recursive version of the method, which we expect limits its ability to do substructure similarity
assessment. Figures 4, 5, 6, and 7 depict the similarity measures between triples of models that we have selected to highlight various properties of our approaches.

Example 1. The first triplet of models, shown in Figure 4, is made up of parts known as part01, spinner3, and spinner4. These are fairly simple industrial models, and their relationship under both distance measures is illustrated in Figure 4. Visually, one would expect that spinner3 and spinner4 would be more similar to one another, which is contradictory to the results attained by both of our similarity metrics. More interestingly, this is consistent for both similarity measures. Our interpretation is that the measures are picking up on a similarity in the model complexity in spinner3 and part01, given that spinner4 is a noticeably more complex part with a greater number of geometric and topological entities.

Example 2. The second triplet, shown in Figure 5, consists of models from the US Department of Energy’s Technologies Enabling Agile Manufacturing (TEAM) Program. The Team Part-1, Team Part-2, and 3mount. Team Part-1 and Team Part-2 are benchmark parts made to test process planning applications, exhibit striking similarity, although their scales and orientation in the Repository are different. 3mount is an actual model from
industry, and is considerably different from either Team Part-1 or Team Part-2. As is depicted in Figure 5, the distance measures seem to agree with visual intuition. The Team Part-1 and Team Part-2 models are considered to be far more similar than 3mount.

Example 3. The third set of models is made up of STI-Simple, STI-Boeing, and Chamber, and are shown in Figure 6. These parts are taken from industry, the first two contributed to the Design Repository by the Boeing Aircraft Company. Note that they exhibit slightly more complexity than is found in the first sets of models. To the human observer, STI-Simple and STI-Boeing are variations on a common structure, whereas the Chamber is an
Table 1. Demonstration of the triangle inequality for \(\text{EigenDistance} \).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{EigenDistance}(A,B) + \text{EigenDistance}(B,C) \geq \text{EigenDistance}(A,C))</th>
<th>(\text{EigenDistance}(B,C) + \text{EigenDistance}(C,A) \geq \text{EigenDistance}(B,A))</th>
<th>(\text{EigenDistance}(C,A) + \text{EigenDistance}(A,B) \geq \text{EigenDistance}(C,B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>part01</td>
<td>spinner3</td>
<td>spinner4</td>
<td>23.13 (\geq) 13.67</td>
<td>29.74 (\geq) 7.06</td>
<td>20.73 (\geq) 16.07</td>
</tr>
<tr>
<td>Team Part-1</td>
<td>Team Part-2</td>
<td>3mount</td>
<td>42.39 (\geq) 21.69</td>
<td>50.49 (\geq) 13.59</td>
<td>35.28 (\geq) 28.80</td>
</tr>
<tr>
<td>STI-Simple</td>
<td>STI-Boeing</td>
<td>Chamber</td>
<td>48.28 (\geq) 32.05</td>
<td>64.42 (\geq) 15.91</td>
<td>47.96 (\geq) 32.37</td>
</tr>
<tr>
<td>Tooling Block</td>
<td>Tooling Block-1</td>
<td>Tooling Plate</td>
<td>234.85 (\geq) 71.27</td>
<td>201.32 (\geq) 104.80</td>
<td>176.07 (\geq) 130.05</td>
</tr>
</tbody>
</table>

Table 2. Demonstration of the triangle inequality for \(\text{ITVDistance} \).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(\text{ITVDistance}(A,B) + \text{ITVDistance}(B,C) \geq \text{ITVDistance}(A,C))</th>
<th>(\text{ITVDistance}(B,C) + \text{ITVDistance}(C,A) \geq \text{ITVDistance}(B,A))</th>
<th>(\text{ITVDistance}(C,A) + \text{ITVDistance}(A,B) \geq \text{ITVDistance}(C,B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>part01</td>
<td>spinner3</td>
<td>spinner4</td>
<td>90.03 (\geq) 74.14</td>
<td>151.35 (\geq) 12.82</td>
<td>86.96 (\geq) 77.21</td>
</tr>
<tr>
<td>Team Part-1</td>
<td>Team Part-2</td>
<td>3mount</td>
<td>257.00 (\geq) 169.90</td>
<td>378.44 (\geq) 48.46</td>
<td>218.36 (\geq) 208.54</td>
</tr>
<tr>
<td>STI-Simple</td>
<td>STI-Boeing</td>
<td>Chamber</td>
<td>371.05 (\geq) 323.80</td>
<td>663.89 (\geq) 30.96</td>
<td>354.76 (\geq) 340.09</td>
</tr>
<tr>
<td>Tooling Block</td>
<td>Tooling Block-1</td>
<td>Tooling Plate</td>
<td>1366.80 (\geq) 217.86</td>
<td>997.06 (\geq) 567.60</td>
<td>785.46 (\geq) 779.20</td>
</tr>
</tbody>
</table>

Example 4. The final set of models we examine is made up of ToolingBlock, ToolingBlock-1, and ToolingPlate, and are shown in Figure 7. These are also industrial fixture models, but they have a large amount of detail on multiple scales, as opposed to ToolingBlock, which ToolingBlock would be extremely similar to ToolingBlock-1, as opposed to ToolingPlate. To mimic human interpretation in this example, filtering of some form must be applied to perform multi-scaled comparisons of the models.

Although not readily apparent in the figures, each of these parts is stored in the Design Repository (NAT, 2000) with differing scales, and transformations. It is essential to note that our similarity measures have no difficulty performing the comparisons between the objects based purely on their shape and structure, regardless of these transformations.

The selected comparisons illustrate the metric properties of our similarity measures. Take, for example, the comparison between Team Part-1, Team Part-2, and 3mount. Tables and provides a demonstration that the triangle inequality is held by both the \(\text{EigenDistance} \) and \(\text{ITVDistance} \) similarity measures.

The central conclusion is that the “length” of the path between two models that passes through an intermediate is longer than the direct path between the models. This is a realization of the triangle inequality, and is a key property of our distance measures. Our distance measures are guaranteed to abide by the triangle inequality given that we simply project model graphs into vector spaces in a deterministic way. The distances we compute are just standard metric norms over these vector spaces, and as a result, our similarity measures are also metric. The only caveat is that the space used in \(\text{EigenDistance} \) computations is of variable length vectors. This is not a problem, as the maximum dimension in the set of vectors is bounded by some finite maximum dimension \(M \), and all vectors of dimension \(N < M \) may be treated as an \(M \)-dimensional vector with zero entries in the \(N + 1 \)-through \(M \)-dimensional components. This effectively reduces the \(\text{EigenDistance} \) space to a standard vector space.

DISCUSSION AND CONCLUSIONS

We have demonstrated two approaches to compute the similarity between solid models, based on shape and topology. Both techniques make use of a transformation from solid models to graph-based structures, called Model Signature Graphs, and then project these graphs into a vector space for easy comparison. The distance between images of models in the vector spaces using
normal vector norms is used as a basis for determining model similarity. We have shown that the similarity metrics reflect real-world concepts of model differences, which makes them applicable when a similarity assessment that mimics human capabilities of shape recognition. The measurements also have the property that they approximate metric distance functions, which enable them to be used as a means for indexing solid models for efficient retrieval.

Future Work. We foresee two major aspects of the *EigenDistance* method that needs further development. Further refining the technique of recursive subdivision of the measure to aid in identifying substructure similarity is essential to shape recognition. Additionally, means of comparing eigenvalue spectra with a differing number of elements may be done in a more intelligent manner, that does not throw away information, or artificially inflate the differences between graphs with a large difference in the number of vertices.

With respect to further development of the *ITVDistance* metric, we believe that the attribute lists that are used in the ITVs may be further refined, to eliminate interdependence of attributes. Other graph invariants may also be developed or exploited. Eigenvalue spectra, for instance, may be incorporated into the ITVs. Also very important will be the development of a weighting of ITV attributes to optimize similarity calculations over particular collections of models, and to minimize the effects of attributes which contain little information.

Finally, we plan to apply our similarity metrics to databases of solid models collected from the National Design Repository (NAT, 2000). We believe that the metrics will prove to be extremely useful in performing database indexing and clustering of the models for knowledge-discovery and data mining (KDD).

Acknowledgements. This work was supported in part by National Science Foundation (NSF) Knowledge and Distributed Intelligence in the Information Age (KDI) Initiative Grant CISE/IES-9873005; CAREER Award CISE/IES-973545 and Grant ENG/DMI-9713718.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the other supporting government and corporate organizations.

REFERENCES

